

Prof. Hugues Pirotte

A prior

50s: Markowitz

- » Identification of the risk-return relationship
- » Matching with the mean-variance criterion
	- \checkmark Expectation \checkmark mean(historical returns)
	- \checkmark Risk \checkmark degree of dispersion \checkmark f(average spreads around average)
- Moments of a distribution and their estimator *n*
	- » Mean $=\mathrm{E}[X] \leftarrow \hat{\mu} = \frac{1}{n} \sum_{i=1}^{n}$ *i Obsⁱ n X* 1 1 $\mu = E[X] \leftarrow \hat{\mu}$
	- » Variance $[(X-\mu)^2] \leftarrow \hat{\sigma} = \frac{1}{n-1} \sum_{i=1}^{n} (Obs_i - \mu)$ = \overline{a} $\overline{}$ $=\mathrm{E} |(X-\mu)^2|$ $\leftarrow \hat{\sigma}$ = *n i Obsⁱ n X* 1 $2 - E[(v, u)^2], \hat{=} - \frac{1}{2} \sum (a_{ks} u)^2$ 1 1 $\sigma^2 = E[(X - \mu)^2] \leftarrow \hat{\sigma} = \frac{1}{\sigma^2} \sum_{i=1}^{\infty} (Obs_i - \mu)^2$
	- » Skewness

$$
s = \frac{E[(X - \mu)^3]}{\sigma^3}
$$

» Kurtosis (excess)

$$
k = \frac{\mathrm{E}\left[(X-\mu)^4\right]}{\sigma^4} - 3
$$

In trading activities

We have seen many sensitivities being used and/or "greeks"

- What are the limits of their application?
	- » We are not necessarily looking at one position at a time
	- » We are not necessarily looking at day-trading.

The VaR concept

- Introduced in the 90s
- "Downside" risk view in currency terms
- Maximum expected loss on a given time-horizon so that the probability of higher losses is lower than a pre-specified level
- Applicable to an entire portfolio (including zero-valued positions at $t=0$) R_c μ ou 0 *p*

The normal distribution of...returns

Estimators depend on time intervals Δt

Solvay Brussels School Economics & Management

- Continuous returns $R_{\scriptscriptstyle t} = \ln (P_{\scriptscriptstyle t}$ / $P_{\scriptscriptstyle t-}$
- Time « compounding » means (for continuous returns), for *T* periods of length Δt $\mu_T = \mu T$ and $\sigma_T = \sigma \sqrt{T}$
- Any historical time series can be analyzed in terms of its distribuional moments
- Assumption: Laplace normal trend theorem holds (« central limit theorem »)
	- asset returns, interest rates & forex rates follow a normal distribution
- \rightarrow the space of potential realizations is continuous and follows a symmetric distribution which normal flatness guarantees a rare occurence of extreme tinuous returns $R_t = \ln(P_t / P_{t-1})$

e « compounding » means (for contingth Δt
 $\mu_T = \mu T$ and $\sigma_T = c$

thistorical time series can be analyze

ments

umption: Laplace normal trend theor

orem »)

asset returns, interest r

The normal distribution...uses

- Known theoretical distributions allow quick estimations of confidence intervals
	- » The normal distributionis is only characterized by μ_{τ} and σ_{τ} .
	- » For a scaled and centered normal variable *Z* (zero mean, unit variance), limit values z_c are given by

$$
\Pr[-z_c \le Z \le z_c] = c \text{ if } Z \sim N(0,1)
$$

leaving the same probability surface on each side of the pdf for a given confidence degree *c*.

A setting...

A random normal can be defined as a function of *Z*

 $X = \mu_T + Z \sigma_T$ $X \sim N(\mu_T, \sigma_T)$

- **And its confidence interval is.** $\Pr[\mu_T - z_c \sigma_T \leq X \leq \mu_T + z_c \sigma_T] = c$ $\Pr \left[-z_c \leq \frac{A - \mu_T}{\sigma} \leq z_c\right] = c,$ *X* $z_c \leq \frac{A - \mu_T}{\tau} \leq z_c$ *T T* $c \leq \frac{A - \mu_T}{\sigma} \leq z_c$ = \rfloor $\overline{}$ $\overline{}$ \lfloor \mathbf{r} \leq \overline{a} \Rightarrow Pr| $-z_c \le$ σ μ_{\rm}
- Shortcomings/refinements
	- » Evidence: existence of jumps/discreteness problems
	- » Statistically: existence of leptokurtic empirical distributions

Concept (cont'd)

A portfolio

- » Starting value: *W⁰*
- **»** Expected value at $t = T$ is $W_T = W_0 (1 + R_T)$.
- » *W^c* = lowest value with a confidence degree *c*
- » Therefore

$$
Pr[W_T > W_c] = c \qquad Pr[W_T \le W_c] = p = 1 - c
$$

- **»** Relative VaR: loss respective to W_T $VaR_{rel} = E[W_T] - W_c = W_0(1 + \mu_T) - W_0(1 + R_c) = -W_0(R_c - \mu_T)$
- **»** Absolute VaR: gross loss respective to $W₀$ $VaR_{abs} = W_0 - W_c = W_0 - W_0(1 + R_c) = -W_0R_c$
- Remember: assumption of normality is on « returns »

Advantages (à priori)

- Simple
- Better than...
	- λ Just the exposure: VaR can be $>$ or $<$ than the exposure
	- » Duration, beta, option delta: VaR is sensitive to the event probability on the underlying variable
- Solution for some derivatives (for forwards and swaps….)
- Total portfolio risk
- Could be easily completed by sensitivity analysis

Examples

Bond pricing

- » Almost sure not to loose all the value in one-week time.
- » Worst expected increase of 4y interest rate in 6 months from now, with a 95% confidence degree: 2.5%
- » 6-month VaR of a 2000€ investment in a 4y 0-coupon is

 $=2000\varepsilon \times 4 \times 2.5\%$ $VaR = \text{Amount} \times \text{Duration} \times \Delta r_{95\%}$ $=200 \epsilon$

- Sale of options
	- » We get a premium
	- **»** Exposed to $Max(S_T K, 0)$
- » Maximum loss can be substantially higher than its premium $- K,0$)

substantially higher than its premium

nting of cash-ins & cash-outs

Nick Leeson
	- \rightarrow Financial risk \neq accounting of cash-ins & cash-outs
		- Ex: Baring's case & Nick Leeson

Methodologies

- **Steps in examining risks**
	- 1. Determine market value of selected position
	- 2. Measure sensitivity to risk sources and correlations between them
	- 3. Identify the time-horizon of the investment
	- 4. Define the confidence degree
	- 5. Compute the maximum expected loss

Methods

- » var-covar
- » Historical simulations
- » MonteCarlo simulations

Comparison of models

Inspired from Jorion, *Financial Risk Manager Handbook*

Var-covar

Making some replacements () and conscious that

$$
1 - c = p = \Pr[W_T \le W_c] = \Pr[R_T \le R_c]
$$

- If *R* is normally distributed, then $Pr[R_T \leq R_c] = Pr[R_T \leq \mu_T - z_c \sigma_T]$
- We therefore get $VaR_{rel} = -W_0(R_c - \mu_T) = W_0 z_c \sigma \sqrt{T}$ $VaR_{abs} = W_0(z_c \sigma \sqrt{T - \mu T})$
- The generalisation to *n* assets i and *m* risk sources j
	- » Assume: we can compute the exposure of any asset to any source of risk

$$
\mathbf{w}_{\mathbf{w}_{\mathbf{x}}\mathbf{w}} = \begin{bmatrix} w_{1,1} & w_{1,2} & \cdots & w_{1,m} \\ w_{2,1} & w_{2,2} & \cdots & w_{2,m} \\ \vdots & \vdots & \ddots & \vdots \\ w_{n,1} & \cdots & w_{n,m} \end{bmatrix}
$$

- **F** Each column total gives a vector $W_{1\times m}^{Tot}$ of size m
- Compute

Solvay Brussels School Economics & Management

- » variances of each risk source
- \rightarrow + covariances of all pairs, using historical data
- Expected value of portfolio

$$
E[R_p] = W_{1 \times m}^{Tot} \mu_{m \times 1} = \begin{bmatrix} w_1^{Tot} & w_2^{Tot} & \cdots & w_m^{Tot} \end{bmatrix} \begin{bmatrix} \mu_2 \\ \mu_2 \\ \vdots \\ \mu_m \end{bmatrix}
$$

 Variance of portfolio $\left| R_{n} \right| = W_{1 \times m}^{Tot} \Sigma_{m \times m} W_{m \times 1}^{Tot} = \left| w_{1}^{Tot} \quad w_{2}^{Tot} \quad \cdots \quad w_{m}^{Tot} \right|$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ \rfloor $\overline{}$ \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} L $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ \rfloor $\overline{}$ \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} L $\overline{}$ $=W^{Tot}_{1 \times m} \Sigma_{~m \times m} W^{Tot}_{m \times 1} =$ *Tot m Tot Tot* $\sigma_{m,j}$ $\sigma_{m,m}$ *j m m Tot m* $Tot = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ *m m m Tot* $_p$ **j** $\mathbf{v}_{1 \times m}$ *w w w* $Var[R_{n}] = W_{1 \times m}^{Tot} \Sigma_{m \times m} W_{m \times 1}^{Tot} = |w_{1}^{Tot} \quad w_{2}^{Tot} \quad \cdots \quad w_{m \times 1}$ \vdots \cdots $\ddot{\ddot{\textbf{z}}}$ \vdots \cdots $\cdots \quad w_m^{Tot} \parallel \begin{array}{ccc} \circ_{2,1} & \circ_{2,2} & \circ \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{array} \parallel \begin{array}{c} w_2 \\ w_2 \\ \cdot \\ \cdot \end{array}$ 1 , 2 $,1$ $\qquad \qquad \mathbf{U}_{m,1}$, 2,2 2 2,1 1,1 $\sigma_{1,2}$ \cdots $\sigma_{1,1}$ 2 $1 \times m$ \rightarrow $m \times m$ ^V $m \times 1$ \rightarrow \lfloor ^V \rfloor \qquad \qquad \vee \lceil σ_{m1} ... σ_{m2} σ σ σ_{γ} σ σ 11 σ σ σ

$$
\blacksquare \quad \textsf{VaR} \qquad \textit{VaR}_{\textit{rel}}^{\textit{pf}} = z_c \sqrt{T} \sqrt{W_{1 \times m}^{\textit{Tot}} \Sigma_{m \times m} W_{m \times 1}^{\textit{Tot}}}
$$

 $\left| \begin{array}{c} \mu_{\scriptscriptstyle 1} \end{array} \right|$

Var-covar (cont'd) - sensitivities

- Not all assets i present a 1 to 1 sensitivity to the risk source j
- Weights are then « scaled »
- Examples (cases):
	- » Shares considered in terms of their systematic risk to an index (and not individually) $W_{i,i} = \text{Amount} \times \beta_{i,i}$
	- » Options on an underlying present as a risk source $w_{i,j}$ = Montant× *Delta*_{i, j}
	- » Options (position i1) on an underlying (position i2) that is related to a risk source j. dividually) $w_{i,j} = \text{Amount} \times \beta_{i,j}$
ptions on an underlying present as a risk sourc
 $w_{i,j} = \text{Montant} \times \text{Delta}_{i,j}$
ptions (position i1) on an underlying (position i
burce j.
 $w_{i,j} = \text{Montant} \times \text{Delta}_{i_1,i_2} \times \beta_{i_2,j}$
ands
 \checkmark Durat

$$
w_{i_1,j} = \text{Montant} \times \text{Delta}_{i_1,i_2} \times \beta_{i_2,j}
$$

- » Bonds
	- \checkmark Duration
	- \checkmark Decomposition into 0-coupon components
	-

- A first exercise Data:
	- » You have the following portfolio of assets (we won't explain here how you did get there)

- » The exchange rate USD/EUR (dollars per euro) is currently trading at 1.25
- » Your reference currency is the Euro

- A first exercise Q&As :
	- » Risk sources?
		- \checkmark an exposure to the EuroStoxx50.
		- \checkmark an exposure to the Dow Jones.
		- \checkmark a currency risk exposure to USD/EUR.
		- \checkmark a risk exposure to interest-rate fluctuations $\hat{\to}$ Δ bond prices.
	- » Exposures?
		- \checkmark Split positions into exposures
		- \checkmark Allocate them to the 4 risk sources
			- $=$ « mapping »
		- \checkmark Values (in ξ):

- » Exposures? (cont'd)
	- « Mappings »:

» Variances-covariances

 \checkmark Data:

» Variances-covariances (cont'd):

V Knowing that $\sigma_{ij} = \sigma_i \times \sigma_j \times \rho_{i,j}$

» VaR?

 \checkmark Multiplication of mapping-vector (with each column of) var-covar matrix (first):

– Example

» VaR?

 \checkmark Second multiplication:

$$
\checkmark \quad \text{Total variance is annual} \to \text{ weekly variance: } \sqrt{\frac{51369530,4}{52}} = 993,92
$$

- \checkmark Critical value of zc for 95% confidence degree is 1,644853
- \checkmark VaR is therefore: $993,92 \times 1,644853 = 1634,85$

» Contribution to VaR?

 \checkmark First derivative w.r.t. « mapping-vector » or weights (Deltas):

$$
\frac{\delta VaR}{\delta W} = z_c \sqrt{T} \frac{\Sigma W}{\sqrt{W} \Sigma W} = z_c^2 T \frac{\Sigma W}{VaR}
$$

 \checkmark Interesting property:

$$
VaR = W\left(z_c\sqrt{T}\frac{\sum W}{\sqrt{W^{'}}\sum W}\right) = \sum_{j=1}^{m} w_j \left(z_c\sqrt{T}\frac{\sum W}{\sqrt{W^{'}}\sum W}\right)_j = \sum_{j=1}^{m} VaR_j
$$

 \checkmark In our case, deltas...

» Contribution to VaR?

 \checkmark In our case, component VaRs...

Var-covar (cont'd) - Indextron Extensions

\blacksquare How can we...

» ...compute the amount of diversification in this portfolio?

» ...use stocks instead of indices or index funds that are not perfectly replicating the index?

Var-covar - the cheatsheet

- 1. Compute the **current market value** of the portfolio, position by position and **identify** for each position, **the risk exposures** against your original situation and **given your reference currency**.
- 2. Create a «mapping» matrix: rows=positions, columns=risk exposures
	- a) For 1:1 exposures: put the amount in your reference currency
	- b) For indirect exposures: pout the amount multiplied by either
		- \checkmark β \rightarrow stock rel. changes vs. index rel. changes
		- \vee D \rightarrow interest-rate changes vs. 0-coupon bond price rel. changes
		- $\sqrt{\Delta}$ \rightarrow option rel. changes vs. underlying rel. changes
	- c) Specific case: Coupon-bearing bonds
		- \checkmark Map to the closest «duration» vertex.
		- \checkmark split the bond among several « risk vertices» based on PV(cash flows).
		- \checkmark split the bond among several « risk vertices» based on the conservation of the total variance (RiskMetrics approach).
- 3. Compute statistics: volatilities and correlations
	- a) Standard
	- b) Or using EWMA, Arch or Garch stats

4. Compute
$$
VaR[P_f, T, c] = z_c \sqrt{T} \sqrt{W_{1 \times m}^{Tot} \Sigma_{m \times m} W_{m \times 1}^{Tot}}
$$

- 5. Nice to have:
	- a) component and incremental VaRs,
	- b) amount of diversification.

Summary (1)

Ex-ante

Summary (2)

- Ex-post
	- » Stress-testing
		- \checkmark Scenario analysis
		- \checkmark Testing models & statistical inputs
		- Developing policy responses
	- » Scenarios...
		- \checkmark Moving one variable at a time
			- 0-correlation
			- With correlation
		- \checkmark Historical scenarios
		- \checkmark Tailoring prospective scenarios
	- » Goal: identify areas of potential vulnerability

Extensions

Extensions: The Quadratic Model

- Using back the idea of delta and gamma, a Taylor Series Expansion would give: 1
	- » For the changes in a portfolio value *P:*

$$
\Delta P = \delta \Delta S + \frac{1}{2} \gamma (\Delta S)^2
$$

$$
\Delta P = S \delta \Delta x + \frac{1}{2} S^2 \gamma (\Delta x)^2
$$

or
$$
\Delta P = S \delta \Delta x + \frac{1}{2} S^2 \gamma (\Delta x)^2
$$

$$
\mathbf{b} \quad \text{Which means} \quad \begin{cases} E(\Delta P) = 0.5 \, S^2 \gamma \, \sigma^2 \\ E(\Delta P^2) = S^2 \delta^2 \sigma^2 + 0.75 \, S^4 \gamma^2 \, \sigma^4 \\ E(\Delta P^3) = 4.5 \, S^4 \delta^2 \gamma \, \sigma^4 + 1.875 \, S^6 \gamma^3 \, \sigma^6 \end{cases}
$$

 For *n* underlying market variables and each instrument dependent on only one of them $\Delta P = \sum S_i \delta_i \Delta x_i + \sum \frac{1}{2} S_i^2 \gamma_i (\Delta x_i)$ $=1$ $i=$ $\Delta P = \sum S_i \delta_i \Delta x_i + \sum_i \frac{1}{2} S_i^2 \gamma_i (\Delta$ *n i* $i \int i \, (\Delta \lambda_i)$ *n i* $P = \sum S_i \delta_i \Delta x_i + \sum \frac{1}{2} S_i^2 \gamma_i (\Delta x)$ 1 2_{α} $(\Lambda_{\alpha})^2$ $\sum_{i=1}^{n} \frac{1}{i} \sum_{i=1}^{n} \frac{1}{2}$ 1 $\delta_i \Delta x_i + \sum_i S_i^2 \gamma$

or more generally
$$
\Delta P = \sum_{i=1}^{n} S_i \delta_i \Delta x_i + \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{1}{2} S_i S_j \gamma_{ij} \Delta x_i \Delta x_j
$$

Extension: Cornish-Fisher expansion

 Formula to approximate quantiles of a pdf based on its moments or more precisely on its "cumulants". Cumulants can be expressed in terms of its mean $\mu = E(x)$ and its central moments

$$
\begin{aligned}\n\mathbf{w} \quad \mathbf{w} \quad \math
$$

» And therefore

$$
\kappa_5 = \mu_5 - 10\mu_3\mu_2
$$

and therefore

$$
x_q \approx z_q + \frac{1}{6} (z_q^2 - 1) \kappa_3 + \frac{1}{24} (z_q^3 - 3z_q) \kappa_4 - \frac{1}{36} (2z_q^3 - 5z_q) \kappa_3^2
$$

$$
-\frac{1}{120} (z_q^4 - 6z_q^2 + 3) \kappa_5 - \frac{1}{24} (z_q^4 - 5z_q^2 + 2) \kappa_3 \kappa_4 + \frac{1}{324} (12z_q^4 - 53z_q^2 + 17) \kappa_3^3
$$

» Applied to a normalized *x* first

$$
x = \frac{x^{real} - \mu}{\sigma} \rightarrow x_q^{real} = x_q \sigma + \mu
$$

References

- Prof. H. Pirotte
- Some excerpts from:
	- » Hull (2007), "Risk management and Financial Institutions"
	- » The RiskMetrics technical document
	- » Jorion (2008), "Financial Risk Manager Handbook"
- Others:
	- » Jorion (2000), « Risk Management Lessons from LTCM ».